学报简介

    智能系统学报(CAAI Transactions on Intelligent Systems)由中国人工智能学会和哈尔滨工程大学联合主办,是中国人工智能学会会刊之一。主要刊登神经网络与神经计算、智能信息处理、自然语言理解、智能 ...

学报详情

刊名: 智能系统学报
CAAI Transactions on Intelligent Systems
主办:  中国人工智能学会;哈尔滨工程大学
周期:  双月
出版地:黑龙江省哈尔滨市
语种:  中文
开本:  大16开
ISSN: 1673-4785
CN:   23-1538/TP
复合影响因子: 0.874
综合影响因子: 0.479
历史沿革:
现用刊名:智能系统学报
创刊时间:2006
中文核心期刊(2014)

02

您所在的位置:首页 > 学报导读 > 2020 > 02 >

改进萤火虫优化算法的Renyi熵污油图像分割

作者:贾鹤鸣 彭晓旭 邢致恺 李金夺 康立飞

关键词: 污油图像处理; 阈值分割; 萤火虫算法; 二维Renyi熵; 混沌优化; 多目标寻优; 适应度学习; 全局优化;

摘要:

针对传统Renyi熵方法在分割污油图像时存在图片差距大、无法根据不同图片进行最优分割的问题,提出改进萤火虫算法对二维Renyi熵分割算法中的α值进行寻优来解决上述问题。分析了采集的污油图片特点以及对污油图片进行分割的必要性;针对多目标寻优精度不高和后期收敛速度较慢的问题,对萤火虫算法进行了改进,并对初始萤火虫位置进行混沌优化处理,使结果达到全局最优;利用基于改进萤火虫算法的Renyi熵图像分割算法对采集的污油图片进行阈值分割实验,并与二维Renyi熵分割、粒子群算法(PSO)Renyi熵分割方法进行比较。实验结果表明:本文提出的算法可以有效地对污油区域进行分割,能够快速地实现复杂图像的精确处理。

上一篇:安全科学中的故障信息转换定律
下一篇:基于模糊不一致对的多标记属性约简