学报简介

    智能系统学报(CAAI Transactions on Intelligent Systems)由中国人工智能学会和哈尔滨工程大学联合主办,是中国人工智能学会会刊之一。主要刊登神经网络与神经计算、智能信息处理、自然语言理解、智能 ...

学报详情

刊名: 智能系统学报
CAAI Transactions on Intelligent Systems
主办:  中国人工智能学会;哈尔滨工程大学
周期:  双月
出版地:黑龙江省哈尔滨市
语种:  中文
开本:  大16开
ISSN: 1673-4785
CN:   23-1538/TP
复合影响因子: 0.874
综合影响因子: 0.479
历史沿革:
现用刊名:智能系统学报
创刊时间:2006
中文核心期刊(2014)

02

您所在的位置:首页 > 学报导读 > 2020 > 02 >

基于可决系数的自适应关联规则挖掘算法

作者:王雪平 林甲祥 巫建伟 高敏节

关键词: 关联规则; 阶次; 自适应; 可决系数; 规则; 支持度; 置信度; 曲线拟合; 多项式; 数据挖掘;

摘要:

针对以频繁项集产生-规则产生为核心的两阶段关联规则挖掘,存在需要人工以先验知识指定最小支持度和最小置信度阈值的缺陷。本文提出以支持数和置信度为依据,采用曲线拟合技术,根据可决系数自动确定曲线的次数及对应多项式的算法AARMBR(Adaptation Association Rule Mining Based on Determination Coefficient R2),从而确定支持度和置信度阈值。在标准数据集Trolley和Groceries上进行关联规则挖掘实验,结果表明本算法更具有数据依赖性,在用户不具备先验知识的情况下,无须人为指定多项式阶次、支持度和置信度阈值的优点。 

上一篇:基于可拓距的改进k-means聚类算法
下一篇:安全科学中的故障信息转换定律