学报简介

    智能系统学报(CAAI Transactions on Intelligent Systems)由中国人工智能学会和哈尔滨工程大学联合主办,是中国人工智能学会会刊之一。主要刊登神经网络与神经计算、智能信息处理、自然语言理解、智能 ...

学报详情

刊名: 智能系统学报
CAAI Transactions on Intelligent Systems
主办:  中国人工智能学会;哈尔滨工程大学
周期:  双月
出版地:黑龙江省哈尔滨市
语种:  中文
开本:  大16开
ISSN: 1673-4785
CN:   23-1538/TP
复合影响因子: 0.874
综合影响因子: 0.479
历史沿革:
现用刊名:智能系统学报
创刊时间:2006
中文核心期刊(2014)

02

您所在的位置:首页 > 学报导读 > 2020 > 02 >

基于可拓距的改进k-means聚类算法

作者:赵燕伟 朱芬 桂方志 任设东 谢智伟 徐晨

关键词: 可拓距; k-means聚类算法; 缩放因子; 初始聚类中心; 密集度; 疏远度;

摘要:

针对现有聚类算法在初始聚类中心优化过程中存在首个初始聚类中心点落于边界非密集区域的不足,导致出现算法聚类效果不均衡问题,提出一种基于可拓距优选初始聚类中心的改进k-means算法。将样本经典距离向可拓区间映射,并通过可拓侧距计算方法得到可拓左侧距及可拓右侧距;引入平均可拓侧距概念,将平均可拓左侧距和平均可拓右侧距分别作为样本密集度和聚类中心疏远度的量化指标;在此基础上,给出初始聚类中心选取准则。通过与传统k-means聚类算法进行对比,结果表明改进后的k-means聚类算法选取的初始聚类中心分布更加均匀,聚类效果更好,尤其在对高维数据聚类时具有更高的聚类准确率和更好的均衡性。 

上一篇:鸽群交互模式切换模型及其同步性分析
下一篇:基于可决系数的自适应关联规则挖掘算法