学报简介

    智能系统学报(CAAI Transactions on Intelligent Systems)由中国人工智能学会和哈尔滨工程大学联合主办,是中国人工智能学会会刊之一。主要刊登神经网络与神经计算、智能信息处理、自然语言理解、智能 ...

学报详情

刊名: 智能系统学报
CAAI Transactions on Intelligent Systems
主办:  中国人工智能学会;哈尔滨工程大学
周期:  双月
出版地:黑龙江省哈尔滨市
语种:  中文
开本:  大16开
ISSN: 1673-4785
CN:   23-1538/TP
复合影响因子: 0.874
综合影响因子: 0.479
历史沿革:
现用刊名:智能系统学报
创刊时间:2006
中文核心期刊(2014)

02

您所在的位置:首页 > 学报导读 > 2020 > 02 >

一种高效的稀疏卷积神经网络加速器的设计与实现

作者:余成宇 李志远 毛文宇 鲁华祥

关键词: 卷积神经网络; 稀疏性; 嵌入式FPGA; ReLU; 硬件加速; 并行计算; 深度学习;

摘要:

针对卷积神经网络计算硬件化实现困难的问题,之前大部分卷积神经网络加速器的设计都集中于解决计算性能和带宽瓶颈,忽视了卷积神经网络稀疏性对加速器设计的重要意义,近来少量的能够利用稀疏性的卷积神经网络加速器设计也往往难以同时兼顾计算灵活度、并行效率和资源开销。本文首先比较了不同并行展开方式对利用稀疏性的影响,分析了利用稀疏性的不同方法,然后提出了一种能够利用激活稀疏性加速卷积神经网络计算的同时,相比于同领域其他设计,并行效率更高、额外资源开销更小的并行展开方法,最后完成了这种卷积神经网络加速器的设计并在FPGA上实现。研究结果表明:运行VGG-16网络,在ImageNet数据集下,该并行展开方法实现的稀疏卷积神经网络加速器和使用相同器件的稠密网络设计相比,卷积性能提升了108.8%,整体性能提升了164.6%,具有明显的性能优势。 

上一篇:深度强化学习中状态注意力机制的研究
下一篇:鸽群交互模式切换模型及其同步性分析