学报简介

    智能系统学报(CAAI Transactions on Intelligent Systems)由中国人工智能学会和哈尔滨工程大学联合主办,是中国人工智能学会会刊之一。主要刊登神经网络与神经计算、智能信息处理、自然语言理解、智能 ...

学报详情

刊名: 智能系统学报
CAAI Transactions on Intelligent Systems
主办:  中国人工智能学会;哈尔滨工程大学
周期:  双月
出版地:黑龙江省哈尔滨市
语种:  中文
开本:  大16开
ISSN: 1673-4785
CN:   23-1538/TP
复合影响因子: 0.874
综合影响因子: 0.479
历史沿革:
现用刊名:智能系统学报
创刊时间:2006
中文核心期刊(2014)

02

您所在的位置:首页 > 学报导读 > 2020 > 02 >

加权PageRank改进地标表示的自编码谱聚类算法

作者:储德润 周治平

关键词: 机器学习; 数据挖掘; 聚类分析; 地标点聚类; 谱聚类; 加权PageRank; 自动编码器; 聚类损失;

摘要:

针对传统谱聚类算法在处理大规模数据集时,聚类精度低并且存在相似度矩阵存储开销大和拉普拉斯矩阵特征分解计算复杂度高的问题。提出了一种加权PageRank改进地标表示的自编码谱聚类算法,首先选取数据亲和图中权重最高的节点作为地标点,以选定的地标点与其他数据点之间的相似关系来逼近相似度矩阵作为叠加自动编码器的输入。然后利用聚类损失同时更新自动编码器和聚类中心的参数,从而实现可扩展和精确的聚类。实验表明,在几种典型的数据集上,所提算法与地标点谱聚类算法和深度谱聚类算法相比具有更好的聚类性能。

上一篇:生成对抗网络辅助学习的舰船目标精细识别
下一篇:基于反卷积和特征融合的SSD小目标检测算法