学报简介

    智能系统学报(CAAI Transactions on Intelligent Systems)由中国人工智能学会和哈尔滨工程大学联合主办,是中国人工智能学会会刊之一。主要刊登神经网络与神经计算、智能信息处理、自然语言理解、智能 ...

学报详情

刊名: 智能系统学报
CAAI Transactions on Intelligent Systems
主办:  中国人工智能学会;哈尔滨工程大学
周期:  双月
出版地:黑龙江省哈尔滨市
语种:  中文
开本:  大16开
ISSN: 1673-4785
CN:   23-1538/TP
复合影响因子: 0.874
综合影响因子: 0.479
历史沿革:
现用刊名:智能系统学报
创刊时间:2006
中文核心期刊(2014)

02

您所在的位置:首页 > 学报导读 > 2020 > 02 >

面向众包数据的特征扩维标签质量提高方法

作者:李易南 王士同

关键词: 众包; 标签质量; 扩维; 专家标注; 噪声识别; 噪声校正; 噪声可能性; 噪声数量上限;

摘要:

众包是一个新兴的收集数据集标签的方法。虽然它经济实惠,但面临着数据标签质量无法保证的问题。尤其是当客观原因存在使得众包工作者工作质量较差时,所得的标签会更加不可靠。因此提出一个名为基于特征扩维提高众包质量的方法 (FA-method),其基本思想是,首先由专家标注少部分标签,再利用众包者标注的数据集训练模型,对专家集进行预测,所得结果作为专家数据集新的特征,并利用扩维后的专家集训练模型进行预测,计算每个实例为噪声的可能性以及噪声数量上限来过滤出潜在含噪声标签的数据集,类似地,对过滤后的高质量集再次使用扩维的方法进一步校正噪声。在8个UCI数据集上进行验证的结果表明,和现有的结合噪声识别和校正的众包标签方法相比,所提方法能够在重复标签数量较少或标注质量较低时均取得很好的效果。 

上一篇:基于相似性负采样的知识图谱嵌入
下一篇:基于位置-文本关系的空间对象top-k查询与排序方法